Robots Taking Human’s Jobs Should Be Taxed Like Humans, Bill Gates Suggests

( Interesting article by Paul Ratner in Big Idea)

The prospect of automation taking away human jobs is both alarming and an opportunity to reorient our civilization to new objectives. The worrying part is that a sizable number of jobs, both blue and white collar, might be gone soon – a number that some estimates put as high as 47% during the next 25 years.

How will we adjust to this transformation? How will the people without jobs survive? Some ideas, floated by people like Elon Musk, see the necessity of instituting a universal basic income. Another approach was just proposed by Bill Gates, one of the original tech superstars and prognosticators, who also happens to be the world’s richest man. In an interview with Quartz, Bill Gates explained his view that as robots will be taking human jobs, a “robot tax” will be necessary on the companies that employ them.

Gates sees this as a positive development, because the tax would fund jobs that do not receive enough focus and talent currently, including elderly care and working with kids. These types of jobs that require empathy are better left to the humans. The government would run such programs. Gates thinks business cannot be left to manage this because growing “inequity” due to automation can only be addressed via the government.

Here’s how Gates says that as a working human is taxed, so should the robot replacing the human –

“Right now, the human worker who does, say, $50,000 worth of work in a factory, that income is taxed and you get income tax, social security tax, all those things. If a robot comes in to do the same thing, you’d think that we’d tax the robot at a similar level,” explains Gates.

He thinks it an overall positive that automation will replace much of human labor, as it will free those people to do something else. What is necessary is training and education. 

“So if you can take the labor that used to do the thing automation replaces, and financially and training-wise and fulfillment-wise have that person go off and do these other things, then you’re net ahead. But you can’t just give up that income tax, because that’s part of how you’ve been funding that level of human workers,” points out Gates.

Gates proposes that the time has come to start talking about these questions. Many jobs in retail, warehouse work, driving, service industry and others should be gone in the next 20 years. And, according to Gates, maybe we should also think about slowing down the pace of automation until we have a good plan going forward.

How would taxing automation work exactly? Gates sees it as a tax on profits from increased efficiency or a tax on robot companies.

“Some of it can come on the profits that are generated by the labor-saving efficiency there. Some of it can come directly in some type of robot tax. I don’t think the robot companies are going to be outraged that there might be a tax. It’s OK,” says Gates.

Overall, Gates stays enthusiastic about the future. But automation is a topic that demands immediate and continual attention. Not because we should be afraid of innovation, but because it’s a challenge we worked to create and need to meet.

“People should be figuring it out. It is really bad if people overall have more fear about what innovation is going to do than they have enthusiasm. That means they won’t shape it for the positive things it can do,” continues Gates.

To him, taxation is a better approach to innovation than stifling it.

posted by f.sheikh

How Plagues Really Work-By Wendy Orent

“The next pandemic will erupt, not from the jungle, but from the disease factories of hospitals, refugee camps and cities”

The latest epidemic to terrify the Western world is Ebola, a virus that has killed hundreds in Africa in 2014 alone. No wonder there was so much worry when two infected health care workers from the United States were transported home from Liberia for treatment – why bring this plague to the US, exposing the rest of the country as well? But the truth is that Ebola, murderous though it is, doesn’t have what it takes to produce a pandemic, a worldwide outbreak of infectious disease. It spreads only through intimate contact with infected body fluids; to avoid Ebola, just refrain from touching sweat, blood or the bodies of the sick or dead.

Yet no logic can quell our pandemic paranoia, which first infected the zeitgeist with the publication of Laurie Garrett’s The Coming Plague (1994) and Richard Preston’s Hot Zone (1995). These books suggested that human incursion into rainforests and jungles would stir deadly viruses in wait; perturb nature and she nails you in the end. By the late 1990s, we were deep into the biological weapons scare, pumping billions of dollars in worldwide government funding to fight evil, lab-made disease. As if this weren’t enough, the panic caused from 2004 to 2007 by reports of the H5N1 or bird flu virus etched the prospect of a cross-species Andromeda strain in the Western mind.

The fear seems confirmed by historical memory: after all, plagues have killed a lot of people, and deadly diseases litter history like black confetti. The Antonine Plague, attributed to measles or smallpox in the year 165 CE, killed the Roman Emperor Marcus Aurelius and millions of his subjects. The Justinian Plague, caused by the deadly bacterial pathogen Yersinia pestis, spread from North Africa across the Mediterranean Sea to Constantinople and other cities along the Mediterranean. By 542, infected rats and fleas had carried the infection as far north as Rennes in France and into the heart of Germany. Millions died.

Then there was the Black Death of 1348-50, also caused by Yersinia pestis, but this time spread by human fleas and from human lung to human lung, through the air. The plague spread along the Silk Road to what is now Afghanistan, India, Persia, Constantinople, and thence across the Mediterranean to Italy and the rest of Europe, killing tens of millions worldwide. Of all the past pandemics, the 1918 influenza (also known as the Spanish flu) is now considered the über-threat, the rod by which all other pandemics are measured. It killed 40 million people around the globe.

It was the great Australian virologist Frank Macfarlane Burnet who argued that the deadliest diseases were those newly introduced into the human species. It seemed to make sense: the parasite that kills its host is a dead parasite since, without the host, the germ has no way to survive and spread. According to this argument, new germs that erupt into our species will be potential triggers for pandemics, while germs that have a long history in a host species will have evolved to be relatively benign.

Many health experts take the notion further, contending that any coming plague will come from human intrusion into the natural world. One risk, they suggest, comes when hungry people in Africa and elsewhere forge deep into forests and jungles to hunt ‘bushmeat’ – rodents, rabbits, monkeys, apes – with exposure to dangerous pathogens the unhappy result. Those pathogens move silently among wild animals, but can also explode with terrifying ferocity among people when humans venture where they shouldn’t. According to the same line of thought, another proposed risk would result when birds spread a new pandemic strain to chickens in factory farms and, ultimately, to us.

But there’s something in these scenarios that’s not entirely logical. There is nothing new in the intimate contact between animals and people. Our hominid ancestors lived on wildlife before we ever evolved into Homo sapiens: that’s why anthropologists call them hunter-gatherers, a term that still applies to some modern peoples, including bushmeat hunters in West Africa. After domesticating animals, we lived close beside them, keeping cows, pigs and chickens in farmyards and even within households for thousands of years. Pandemics arise out of more than mere contact between human beings and animals: from an evolutionary point of view, there is a missing step between animal pathogen and human pandemic that’s been almost completely overlooked in these terrifying but entirely speculative ideas.

According to the evolutionary epidemiologist Paul W Ewald of the University of Louisville, the most dangerous infectious diseases are almost always not animal diseases freshly broken into the human species, but diseases adapted to humanity over time: smallpox, malaria, tuberculosis, leprosy, typhus, yellow fever, polio. In order to adapt to the human species, a germ needs to cycle among people – from person to person to person. In each iteration, the strains best adapted to transmission will be the ones that spread. So natural selection will push circulating strains towards more and more effective transmission, and therefore towards increasing adaptation to human hosts. This process necessarily takes place among people.

Read more

posted by f.sheikh


Will hindering mixing of races jeopardize our ability to adapt to future hostile environment?

(There is anti-immigrant and nationalist wave all over the world which wants to hinder the historical pattern of immigration and movement of people which helps to create mixed races that have more chances of survival in future hostile environment. It is a fascinating article to read. f.sheikh ) 

In the future, a lot of people might look like Danielle Shewmake, a 21-year-old college student from Fort Worth, Texas. Shewmake has dark, curly hair, brown eyes, and an olive skin tone that causes many to mistake her heritage as Mediterranean. Her actual pedigree is more complex. Her father is half-Cherokee and half-Caucasian, and her mother, who was born in Jamaica, is the child of an Indian mother and an African and Scottish father.

‘My sister and I are just a combination of all that,’ she says, adding that she dislikes having to pick a particular racial identity. She prefers the term ‘mixed’.

Differences in physical traits between human populations accumulated slowly over tens of thousands of years. As people spread across the globe and adapted to local conditions, a combination of natural selection and cultural innovation led to physical distinctions. But these groups did not remain apart. Contact between groups, whether through trade or conflict, led to the exchange of both genes and ideas. Recent insights from the sequencing of hundreds of thousands of human genomes in the past decade have revealed that our species’ history has been punctuated by many episodes of migration and genetic exchange. The mixing of human groups is nothing new.

What is new is the rate of mixing currently underway. Globalisation means that our species is more mobile than ever before. International migration has reached record highs, as has the number of interracial marriages, leading to a surge of multiracial people such as Shewmake. While genetic differences between human populations do not fall neatly along racial lines, race nevertheless provides insight into the extent of population hybridisation currently underway. This reshuffling of human populations is affecting the very structure of the human gene pool.

Archaeological evidence suggests that Homo sapiens came into existence roughly 200,000 years ago in east Africa. By 50,000 years ago (but possibly earlier) people had begun to spread out of Africa, across the Arabian Peninsula and into Eurasia, perhaps driven by a changing climate that necessitated a search for new food sources. They made their way across now flooded land bridges to reach Australia and the Americas, and eventually came to inhabit even the most remote Pacific islands.

Evidence of these ancient migrations can be found by examining the DNA of living people as well as DNA recovered from ancient skeletons. In some cases, the genome studies corroborate archaeological and historical records of human movements. The Mongol Empire, the Arab slave trade, the spread of Bantu-speaking peoples across much of Africa and the effects of European colonialism have all left a predictable record within our genomes. In other cases, the genetic data provide surprises and can help archaeologists and historians settle controversies. For example, until recently, it was thought that the Americas were settled by a single wave of nomads who travelled across a land bridge spanning the Bering Strait. But recent genome analyses, which include samples from a wide range of indigenous groups, suggest that the Americas might have been colonised by at least four independent waves of settlers.

We are a restless species, and our genomes reveal that even the most intimidating geographical barriers have managed only to somewhat restrict human movements. Today, international migration is increasing at 1 to 2 per cent per year, with 244 million people in 2015 living in a country other than the one in which they were born. The biological implications of this massive experiment in interbreeding we are now witnessing will not be known for generations. But applying what we know about genetics and evolution can help us predict our future, including whether humans will be able to continue adapting to the constantly changing conditions on Earth.

Biological adaptation is a result of natural selection, and natural selection requires diversity. Think of natural selection like a sieve separating one generation from the next. Only the genes from those individuals that are well suited to their environment at that time will reproduce, passing their genes through the sieve to the next generation. Changing conditions alter the shape of the sieve’s holes and thereby which genes can pass through. The more variation there is in the population, the better the chances that some genes present in a generation will be able to pass through the sieve and be inherited by future generations. Unfortunately for us, humans are not very diverse.

We Homo sapiens have less genetic diversity than do many species of chimpanzees, gorillas and orangutans – our closest living relatives – despite the fact that each of these are so few in number that they are considered either endangered or critically endangered. Our low diversity is due to the fact that we have only recently become so numerous (whereas the opposite is true for our primate cousins). There are now roughly 7.5 billion living humans, but just 100 years ago there were fewer than 2 billion. Our population has exploded in the recent past, and is continuing to grow, with some 130 million babies born each year. Each baby carries on average 60 new mutations in its genes. With these new gene variants comes the potential for future evolutionary change.

Our ability to continue to adapt to the changing conditions on Earth improves as new genetic variation is introduced to our gene pool through mutations. But the entire human gene pool is made of many smaller gene pools, each corresponding to a particular population. The movement of people around the Earth is mixing these populations, allowing genes to flow back and forth between gene pools, with several important implications for our ongoing evolution.

Let’s start with the downsides. Like all species, human groups became adapted to local environments as we spread around the world. Yet the rapid movement of people between regions and the mixing of people with distinct characteristics means that people today are more likely to live in an environment for which they are not biologically well-suited.

read more

Basic Guaranteed Income For Every Cirizen

With automation and moving of jobs to cheap labor countries, possibly we are entering a permanent era where significant potion of citizens may never find a job or jobs may not pay enough to survive. One of the solution put forward is a basic guaranteed income for every citizen by the government. Finland has started this experiment and some other countries, including Canada and Netherlands, are preparing to start similar experiments. Worth reading article below.( f sheikh  ) 

It looks like 2,000 citizens in Finland will welcome the new year with outstretched arms.

These Finns are the lucky recipients of a guaranteed income beginning this year, as the country’s government finally rolls out its universal basic income (UBI) trial run.

UBI is a potential source of income that could one day be available to all adult citizens, regardless of income, wealth, or employment status.

This pioneering UBI program was launched by the federal social security institution, Kela. It will give out €560 (US$587) a month, tax free, to 2,000 Finns that were randomly selected.

The only requirement was that they had to be already receiving unemployment benefits or an income subsidy.

The program allows unemployed Finns to not lose their benefits, even when they try out odd jobs.

“Incidental earnings do not reduce the basic income, so working and … self-employment are worthwhile no matter what,” says Marjukka Turunen, legal unit head at Kela. If successful, the program could be extended to include all adult Finns.

Full article