The Box That Built The Modern World

By Andrew Curry In Nautilus

Engineering: How shipping containers made distance irrelevant. 

“Think of the shipping container as the Internet of things. Just as your email is disassembled into discrete bundles of data the minute you hit send, then re-assembled in your recipient’s inbox later, the uniform, ubiquitous boxes are designed to be interchangeable, their contents irrelevant.

Once they enter the stream of global shipping, the boxes are shifted and routed by sophisticated computer systems that determine their arrangement on board and plot the most efficient route to get them from point to point. The exact placement of each box is a critical part of the equation: Ships make many stops, and a box scheduled to be unloaded late in the journey can’t be placed above one slated for offloading early. Imagine a block of 14,000 interlocked Lego bricks—now imagine trying to pull one out from the middle.

The container’s efficiency has proven to be an irresistible economic force. Last year the world’s container ports moved 560 million 20-foot containers—nearly 1.5 billion tons of cargo altogether. Though commodities like petroleum, steel ore, and coal still move in specially designed bulk cargo ships, more than 90 percent of the rest—everything from clothes to cars to computers—now travels inside shipping containers. “Reefer” containers, insulated and equipped with cooling units, carry refrigerated cargo and are plugged into power sources on ships or at dockside. Because the containers are all identical, any ship can move them.

Those already huge numbers are expected to grow. Increasingly, cargo companies are looking for ways to move bulk cargo in containers, fitting the steel boxes with bladders to transport liquid chemicals or cleaning them and using polypropylene liners to move anything from soy, corn, and wheat to salt and sugar.”

“By driving the cost of shipping internationally way down and the speed of global commerce way up, containers made the globalization of manufacturing possible. Yet for all the concept’s seeming simplicity, the actual process is fiendishly complex.

To get a sense of how the system works, imagine one of the containers aboard the Hong Kong Express, which is owned by German shipping giant Hapag-Lloyd. Asked to trace a product through a typical container voyage, Hapag-Lloyd spokesman Rainer Horn suggests a T-shirt sewn at a factory near Beijing, the kind you might buy at H&M.

Tagged, folded, and boxed, the T-shirt would be “stuffed” into a container with 33,999 identical shirts at the factory. Once sealed with a plastic tag and listed on a computerized manifest, the merchandise could pass through nearly three dozen steps before arriving at a discount clothing retailer’s distribution center near Munich. There’s the trucker who moves the box to a waiting ship in Xinjiang, the feeder ship that moves it to Singapore to be loaded onto a bigger Europe-bound freighter, the crane operator in Hamburg, customs officials, train engineers, and more.

Yet the container’s uniformity smooths each step of the way. Trucks and trains are fitted to haul the identical boxes; cranes are designed to lift the same thing over and over. The total time in transit for a typical box from a Chinese factory to a customer in Europe might be as little as 35 days. Cost per shirt? “Less than one U.S. cent,” Horn says. “It doesn’t matter anymore where you produce something now, because transport costs aren’t important.”

http://nautil.us/issue/3/in-transit/the-box-that-built-the-modern-world

Posted By F. Sheikh

 

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.